

Sectionwise Grand Test - Quantitative Aptitude - SWGTQ-171202 **HINTS & SOLUTIONS**

ANSWER KEY					
	1. (4)	11. (2)	21. (5)	31. (4)	41. (1)
	2. (2)	12. (3)	22. (1)	32. (3)	42. (2)
	3. (5)	13. (4)	23. (5)	33. (4)	43. (5)
	4. (4)	14. (2)	24. (4)	34. (3)	44. (2)
	5. (5)	15. (1)	25. (2)	35. (3)	45. (5)
	6. (2)	16. (1)	26. (4)	36. (3)	46. (3)
	7. (1)	17. (3)	27. (1)	37. (3)	47. (2)
	8. (3)	18. (2)	28. (2)	38. (2)	48. (4)
	9. (3)	19. (2)	29. (1)	39. (2)	49. (5)
	10. (4)	20. (4)	30. (1)	40. (3)	50. (1)

HINTS & SOLUTIONS

1. (4) Let marked price for article II is 100x

Cost price of item II for seller A

$$= \frac{100}{100+s} \times (100x - 16x) = \frac{100}{100+s} (84x)$$

Cost price of item II for seller C

$$=\frac{100}{100+3s-2}(100x-32x)=\frac{100}{98+3s}(68x)$$

Given

$$\frac{\frac{100}{100+s}84x}{\frac{100}{98+3s}68x} = \frac{21}{17}$$
$$\frac{98+3s}{100+s} \times \frac{21}{17} = \frac{21}{17}$$

$$\frac{160}{98 + 3s}68x$$

$$\frac{98+3s}{100+s} \times \frac{21}{17} = \frac{2}{1}$$

$$98 + 3s = 100 + s$$

$$2s = 2$$

s = 1

2. (2) Let marked price for iten II be 100x

Let marked price for iten III be 100y

Let for seller D, Selling price of item II = 82x

Let for seller D, selling price of item III = 93y

Given

$$82x - 93y = 4810$$
 ... (i)

According to question

100x + 100y = 8000

x + y = 80 ... (ii)

From eqn. (i) and (ii)

y = 10

x = 70

MP of item II = 100x = 7000

MP of item III = 100y = 1000

Required difference = 7000 - 1000

=6000 Rs.

Let marked price of Item II be 100x

SP of item II by seller A = 100x - 16x = 84x

Let SP of item II by seller B = y

...84x + y = 8800...(i)

And S.P. of item II by seller C = 68x

Now, y + 68x = 7200

From eqn. (i) and (ii)

16x = 1600

x = 100

S.P. of item II by seller C = 68x

= 6800 Rs.

4. (4) Let Cost price of item I by seller E = x

Let selling price of item III by same seller = y

Given,
$$\frac{x}{y} = \frac{5}{6}$$

C.P. of item I by seller E

$$= \frac{750}{25} \times 100 = 3000 \text{ Rs}.$$

$$= \frac{6x}{5} = \frac{6 \times 3000}{5} = 3600 \text{ Rs.}$$

5 5 C.P. of item III by seller E =
$$\frac{100}{100 + 20} \times 3600 = \frac{100}{120} \times 3600 = 3000 \text{ Rs.}$$

Profit on item III by seller E = 3600 - 3000

= 600 Rs.

Total profit by selling item I and III together

= 750 + 600 = 1350 Rs.

Here total profit earned by five sellers

$$= \frac{13500}{5400 \times 5} \times 100 = 50\%$$

Let C.P. of each item = 100

Then MP of item III by each seller = 100 + 100 = 200

SP of item III by seller $A = \frac{68}{100} \times 200 = 136$

SP of item III by seller B = 154

SP of item III by seller C = 152

SP of item III by seller D = 186

Total profit excluding that of seller E

= 36 + 54 + 52 + 86

= 228 Rs.

To make 50% profit, minimum profit of item III

by seller E = (250 - 228)

Required discount =
$$\frac{200 - (100 + 22)}{200} \times 100 = 39\%$$

- Time taken in travelling to Bhopal 6.(2)
 - Half of the distance by car = $\frac{18}{2}$ = 9 hours

One-third of the distance by bus = $\frac{15}{3}$ = 5 hours

Rest of the distance by train = $12 \times (1 - \frac{1}{2} - \frac{1}{3}) = \frac{12}{6} = 2$ hours

Average Speed = $\frac{Total\ Distance}{Total\ Time\ Taken} = \frac{1080}{(9+5+2)} = \frac{1080}{16} = 67.5 \text{ km/h}$

7. (1) Let the estimated speed of car be x km/h

Then, Actual speed of car = 1.25x km/h

Ratio of speed is inversely proportional to ratio of time

taken, when distance is same.

Estimated Time Taken Actual Speed Estimated Speed Actual Time Taken

$$\frac{1.25x}{x} = \frac{5}{Actual\ Time\ Taken}$$

$$\Rightarrow \text{Actual time taken to reach Delhi} = 4 \text{ hours}$$

Actual time taken to travel back from Delhi by train= 3 hours 45 minutes

Total time = 4 hours + 4 hours + 3 hours 45 minutes = 11 hours 45 minutes

Hence, person reached his place at = 8 AM + 11 hours 45 minutes = 7:45 PM

Fare in terms of Rs/km for journey by bus: 8. (3)

For Lucknow =
$$\frac{1296}{720}$$
 = 1.8 Rs/km

Similarly,

For Jaipur = 1.75 Rs/km

For Ahmedabad = 1.95 Rs/km

For Bhopal = 1.7 Rs/km

For Delhi = 2.1 Rs/km

For Chandigarh = 2.05 Rs/km

Hence, journey to Jaipur is the second most economical by bus.

9. (3) Ratio of speed is inversely proportional to ratio of time taken, when distance is same.

Ratio of speeds =
$$\frac{1}{7}$$
 : $\frac{1}{6}$: $\frac{1}{5}$ = 40 : 35 : 56

10. (4) Let, the present ages of Raju and his son be x and y respectively.

2n years ago,

$$x - 2n = 4(y - 2n)$$

$$x = 4y - 6n$$
(i)

n years ago,

$$x - n = 3(y - n)$$

$$\Rightarrow x = 3y - 2n$$
(ii)

Solving (i) and (ii),

$$v = 4n$$

And,
$$x = 4 \times 4n - 6n = 10n$$

N years later,

$$x + n + y + n = 80$$

$$\Rightarrow 4n + n + 10n + n = 80$$

$$\Rightarrow 16n = 80$$

$$\Rightarrow n = 5$$

Difference in their ages = 10n - 4n = 50 - 20 = 30

Let the C do in one day = 4y work 11. (2)

Let the D do in one day = 5y work

2 day work of C + D = 9y

In 44 day they will complete $9y \times 22 = 198y$

In another $\frac{1}{2}$ days 2y work will be done

C will take =
$$\frac{200y}{4y}$$
 days = 50 day

D will take = 40 days.

C and D will complete work together in $=\frac{50\times40}{90}=\frac{200}{9}$

According to condition

$$\frac{200}{9x} + \frac{200}{9 \times 2x} = 1$$

$$\frac{400 + 200}{18x} = 1$$

$$\Rightarrow x = 33\frac{1}{3}$$

 $A - 33\frac{1}{3} days$ 12. (3)

$$B-66\frac{2}{3}$$
 days

$$(A+B) - \frac{200}{9} days$$

Required Time
$$-\frac{200}{9} \times \frac{9}{4} = 50 \ days$$

For Bag A 13. (4)

$$W = 0 + 5 ...(i)$$

Let No. of Red Colored balls = x

$$\therefore$$
 Total balls = 0 + W + x

$$\therefore \frac{x}{0+W+x} = \frac{15}{52}...(ii)$$

and Given —
$$W = 131\frac{1}{4}\%$$
 of 0

$$W = \frac{21}{16}O$$

$$\frac{W}{O} = \frac{21}{16}$$

$$\frac{N}{2} = \frac{16}{21}$$

From eqn. (i)

No. of white colored balls = 21

No. of Orange colored balls = 16

From eqn. (ii)

$$\frac{x}{21+16+x} = \frac{15}{52}$$

$$\frac{x}{37+x} = \frac{15}{52}$$

$$\frac{x}{37+x} = \frac{13}{52}$$

$$52x = 37 \times 15 + 15x$$

$$37x = 37 \times 15$$

$$x = 15$$

 \therefore No. of red colored balls = 15

∴ for bag A -

Similarly,

$$Red = 9$$

After replacement

No. of white balls in Bag C = 15 + x

No. of Red balls in Bag C = 9 - 2 = 7No. of Orange balls in Bag C = 24

$$\therefore \frac{24}{15 + x + 7 + 24} = \frac{1}{2}$$

$$48 = 46 + x$$

$$x = 2$$

14. (2)

For Bag A

$$W = 0 + 5 ...(i)$$

Let No. of Red Colored balls = x

$$\therefore \text{ Total balls} = 0 + W + x$$

$$x \qquad 15$$

$$\therefore \frac{x}{0 + W + x} = \frac{15}{52} \dots (ii)$$

and Given —
$$W = 131\frac{1}{4}\%$$
 of 0

$$W = \frac{21}{16}0$$
$$\frac{W}{0} = \frac{21}{16}$$

$$\frac{W}{\Omega} = \frac{1}{2}$$

No. of white colored balls = 21 No. of Orange colored balls = 16

From eqn. (ii)

$$\frac{x}{21+16+x} = \frac{15}{52}$$
$$\frac{x}{37+x} = \frac{15}{52}$$
$$52x = 37 \times 15 + 15x$$

 $37x = 37 \times 15$

x = 15

: No. of red colored balls = 15

∴ for bag A -Red = 15

White = 21Orange = 16

Similarly,

For bag B-

Orange = 19 White = 6

Red = 50

For Bag C —

White = 15

Red = 9

Orange = 24

Required %

$$= \frac{(16+24)-(15-9)}{(16+24)} \times 100$$
$$= \frac{40-6}{40} \times 100 = 85\%$$

For Bag A 15. (1)

W = 0 + 5 ...(i)

Let No. of Red Colored balls = x

∴ Total balls = 0 + W + x

$$\therefore \frac{x}{0 + W + x} = \frac{15}{52} ... (ii)$$
and Given $-W = 131\frac{1}{4}\%$ of 0

 $W = \frac{21}{16}O$ $\frac{W}{O} = \frac{21}{16}$

From eqn. (i)

No. of white colored balls = 21

No. of Orange colored balls = 16

From eqn. (ii)

$$\frac{x}{21+16+x} = \frac{15}{52}$$

$$\frac{x}{37+x} = \frac{15}{52}$$

$$52x = 37 \times 15 + 15x$$

$$37x = 37 \times 15$$

$$x = 15$$

$$\therefore \text{ No. of red colored balls} = 15$$

$$\therefore \text{ for bag A} -$$

Red = 15 White = 21Orange = 16

Similarly,

For bag B —

Orange = 19 White = 6

Red = 50

For Bag C -

White = 15

Red = 9

Orange = 24

Required Probability = $\frac{16}{52} \times \frac{19}{75} = \frac{76}{975}$

16. (1) Income of company Y $=\frac{520000}{1000} \times 165$

17. (3)

= 65 = 1320000

Amount invested by company X in 2014

 $\frac{2}{3} \times 30,00,000 = 20 \ lakh$

Amount invested by company Y in 2014

 $=\frac{1}{3} \times 30,00,000 = 10$ lakh

Profit earned by company $X = \frac{75}{100} \times 20,00,000$

Profit earned by company $Y = \frac{80}{100} \times 10,00,000$

=8 lakh

Total profit = 23 lakh

Investment of company X in 2013 = $\frac{48,00,000}{1.60}$ = 30lakh 18. (2)

Profit earned in 2013 = 48 - 30 = 18 lakh

Profit earned in $2012 = \frac{45}{100} \times 30,00,000$

Difference = 18 - 13.5 = 4.5 lak

Income of X in 2010 = 1.75x19. (2)

Income of Y in 2010 = 1.55x

 $\therefore \text{ ratio} = \frac{170}{155} = 34 : 31$

Income of company X in 2012 20. (4)

 $\frac{145}{100} \times 8,00,000$ = 1,160,000

Amount invested in 2013 by company X

 $\frac{1160000}{1100} \times 100 = 725000$ 160

A) $M + T + W = 38 \times 3 = 114$ B) $T + W + Th = 43 \times 3 = 129$

C) T = Th = 45

21. (5)

All the three together are sufficient

Let the length of rectangle is ℓ and width is w22. (1)

Length becomes = 0.85ℓ

Width becomes = 1.2 b

A) b = 16 cm

B) $\ell = 25 \text{ cm}$

C) $b \times \ell = 400$ cm

Area = $0.85l \times 1.2b = 1.02lb$

Change in Area = 1.02lb - lb = .02lb

Put value of lb from C

The answer can be calculated using A and B together or C only.

We cannot find because there is no information regarding strength of non-officer employees.

24. (4) Let the marked price is M and cost price is C

A) 0.85 M = 1020

M = 1200

B) M = $\frac{25}{17}$ C

C) $0.9 \text{ M} = \frac{22.5}{100} \text{ C}$

A and either B or C.

25. (2) We can get ratio of investment from either statement B alone or C alone so profit of B can be determined from

option b

 $5 \times 2 - 1 = 9$ 27. (1)

 $9 \times 2 + 3 = 21$ $21 \times 2 - 5 = 37$

 $37 \times 2 + 7 = 81$

 $(1)^3 + 1 = 2$ 28. (2)

 $(2)^3 + 2 = 10$

 $(3)^3 + 3 = 30$

 $(4)^3 + 4 = 68$

 $(5)^3 + 5 = 130$

 $(6)^3 + 6 = 222$

29. (1)

- 30. (1) $4 \times 0.5 + 0.5 = 2.5$ $2.5 \times 1 + 1 = 3.5$ $3.5 \times 1.5 + 1.5 = 6.75$ $6.75 \times 2 + 2 = 15.50$
- $15.50 \times 2.5 + 2.5 = 41.25$ 31. (4) Temperature on the fourth day $=40.2 \times 4 + 41.3 \times 4 - 40.6 \times 7$ = 160.8 + 165.2 - 284.2 = 41.8°C
- Suppose there are only men, then the no. of legs = $60 \times 2 = 120$ 32. (3) Now since there are 48 = (168 - 120) legs extra, it means there are 24 = $\left(\frac{48}{2}\right)$ sheep, since a sheep has 2 extra legs than a man has.
- Let the original fraction be x/y. 33. (4) Then, $\frac{115\% \text{ of } x}{92\% \text{ of } y} = \frac{15}{16} \Rightarrow \frac{115x}{92y} = \frac{15}{16}$ $\Rightarrow \frac{x}{y} = \left(\frac{15}{16} \times \frac{92}{115}\right) = \frac{3}{4}$
- 34. (3) Let cost price = x Then we have, $x \left(\frac{95}{100}\right) \left(\frac{110}{100}\right) = x \left(\frac{105}{100}\right) - 1$ or $x = \frac{100 \times 100}{100} = 200$ $or, x = \frac{100 \times 100}{105 \times 100 - 95 \times 110} = 200$ ∴ Cost price = Rs 200
- 35. (3) For 3 years Diff. = $\frac{\text{Sum} \times (\text{rate})^2 (300 + \text{rate})}{\text{Output}}$ $(100)^3$ $2000 \times 10 \times 10 \times 310$ = Rs 62 $100\times100\times100$
- Required profit percentage 36. (3) $=\frac{125-120}{125-120}\times 100$ $= \frac{120}{4 \cdot \frac{1}{6}\%}$
- 37. (3) New cost price of the item 125 \times 100 = 110 $(\frac{3}{22}+1)$ Reduction in expenditure on raw materials required = Rs. 10
 - ∴ Percentage reduction required = $\frac{10}{46} \times 100$ $=21\frac{17}{23}\%$
- Changed fixed price = $1.25 \times 20 = Rs.25$ 38. (2) : Total cost of the item = Rs. 125 = Previous selling price : Required percentage increase = 20%
- 39. (2) Gutter 1 Gutter 2 Distance from P to gutter 1

= $60 \times \frac{10}{60}$ = 10 km. This is $\frac{5}{6}$ (Distance between gutter 2 and Q) ∴ Distance between Q and Gutter 2 = 12 km. Distance between Gutter 1 and 2 = 72 - 12 - 10 = 50 km. Total time of travel of the ambulance at twice the speed $=\frac{50\times2+10}{120}=\frac{11}{12}\ hours=55\ minutes.$ Total time of travel of the ambulance = (55 + 10) = 65 minutes. Total time taken = 65 + 2 = 67.

40. (3) At 10: 15 a.m. In one hour 15 min i.e. upto 10:15 Am total distance travelled by both is $40 + 10 \ km$

They will meet after = $\frac{120-50}{1}$ $=\frac{70}{80} = \frac{7}{8}hrs = \frac{7}{8} \times 60 \text{ minutes}$ $\frac{105}{2} = 52$ minutes 30 seconds

They will meet at 10:15 a.m. +52 minutes 30 sec i.e. 11:07:30 a.m.

Quantity I:- $\frac{95}{100} MP = \frac{133}{100} CP$ $\Rightarrow MP = 1.4 CP$ 41. (1) Percentage mark-up = 40% Quantity II:-

Total no. of people under 25 years of age = $\frac{40}{100} \times 60 = 24$ No. of singers under 25 years of age $=\frac{20}{100} \times 20 = 4$ No. of dancers under 25 years of age =24-4=20Percentage of dancers under 25 years of age = $\frac{(40-20)}{60} \times 100 = 33\frac{1}{3}\%$ Quantity II < Quantity I

42. (2) Quantity I:-Fifth number = $5 \times 61 - 2 \times 69 - 2 \times 69$ =305 - 276= 29 Quantity II:-

Quantity II > Quantity I

or
$$\frac{7\sqrt{2}}{AC} = \frac{PC}{D}$$

or, PC = 7 and OP = 7

Area of shaded region

$$= \frac{1}{4} \times \frac{22}{7} \times 7\sqrt{2} \times 7\sqrt{2} - 7 \times 7 = 28 \text{ cm}^2$$

So, quantity I=quantity2 Since x > 0 and y < 0,

Quantity 1 will always be negative

And quantity 2 will always be positive

Hence, quantity 1 < quantity 2

45. (5) Let the speed of boat in still water be x kmph and that of stream be r kmph,

44. (2)

Then
$$\frac{x-r}{r} = \frac{5}{1}$$

$$\Rightarrow \frac{x}{1} = \frac{6}{1}$$

$$5 \times 7x - 3 \times 6x = 68$$

$$\Rightarrow x = 4$$

Quantity 1: upstream speed of boat = 5x = 20 km/hr

Quantity 2: speed of bus = $\frac{60}{3}$ = 20 km/hr

46. (3) On Tuesday

Gaurav =
$$\frac{25 \times 100}{50}$$
 = 50 minutes

$$Abhishek = \frac{20 \times 100}{80} = 25 \text{ minutes}$$

Neeraj =
$$\frac{10 \times 100}{100}$$
 = 10 minutes

Clearly on Tuesday, the efficiency of Neeraj is maximum. So he should start the job so that the job is completed in the least possible time.

47. (2) On Tuesday

Gaurav = 50 minutes

Arunoday =
$$\frac{150 \times 100}{30}$$
 = 500 minutes

Abhishek = 25 minutes

(Gaurav + Arunoday)'s 5 minutes work

$$= \frac{5}{50} + \frac{5}{500} = \frac{1}{10} + \frac{1}{100} = \frac{11}{100}$$

$$Remaining \, work = 1 - \frac{11}{100} = \frac{89}{100}$$

Required time =
$$\frac{\frac{89}{100}}{\frac{5}{100} + \frac{1}{25}} = 21\frac{4}{21}$$
 minutes

48. (4) On Tuesday —

Abhishek = 25 min.

$$Shailesh = \frac{50 \times 100}{40} = 125 \text{ min.}$$

Neeraj = 10 min.

Abhishek 25 ★+10

$$= 10 + 2 + 25 = 37$$
 units

Shailesh will work on this job for 7 minutes.

∴ Share of Shailesh =
$$\frac{7 \times 2}{250} \times 875 = 49$$
 Rs.

On Tuesday — 49. (5)

Aman = $125 \times 2 = 250$ min.

Neeraj = 10 min.

Abhishek = 25 min.

Aman's 50 min. work =
$$\frac{50}{250} = \frac{1}{5}$$

Remaining work = $1 - \frac{1}{5} = \frac{4}{5}$

Remaining work =
$$1 - \frac{1}{5} = \frac{4}{5}$$

Required time =
$$\frac{\frac{4}{5}}{\frac{1}{10} + \frac{1}{25}} = 5\frac{5}{7}$$
 minutes

$$\frac{2}{20} + \frac{5}{25} + \frac{5}{35} + \frac{5}{26} + \frac{x}{250} = 1$$

$$\frac{x}{250} = 1 - \frac{578}{910}$$

$$\frac{250}{250} = 1 - \frac{1}{910}$$
$$x \approx 91 \text{ minutes}$$